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Transport equations

Describe how properties of a fluid element change, as given by the

substantial derivative, D()/Dt, as the element is transported through
the flow field.

Mass conservation

oU;

() U; = E:i' + U,
53?1;

E,i'iﬂ"t +u;) =0

= 0

. mean and fluctuating velocity
! components are divergence free




Momentum conservation

Navier-Stokes equation for an incompressible flow (N-S)

aL'T; 5 - 5:’3 Cp -
— (UU;) = ——— + uNV2U;
P ‘|‘P5$k{ kUi) + i

3:1:;-
Decomposing into mean and fluctuating parts, invoking continuity
and averaging using Reynolds rules yields

oU; J — = OP s, oU;
+— (OU;) | = —5—+ 57— ( np— — plzur
P15t T awe VRV | = a0t oy Mo "’/
B Reynolds stress tensor
aU;
This equation and 63:-2 = 0 together are called the Reynolds Averaged
1

Navier-Stokes Equati'ons (RANS). This equation describes the transport of the
Mean momentum in the x; direction

There are more unknowns than the four available equations. To “close” the

set of equations the Reynolds stress term must be related to the
velocity gradient in some way through a model equation.



Reynolds Shear stress or velocity fluctuation covariance

R

i — ”f”,f

For i =j,and summing over i, half this covariance becomes the turbulent kinetic
energy (TKE) when multiplied by the density

K = ﬂ?ﬂ
-

The components of the TKE are related to the variances of the velocity fluctuations

2 2 2
Uy, Us, U

The square roots of these variance are the root-mean-square values of the
velocity fluctuation components. They are a measure of the amplitudes of
the fluctuations.



Reynolds stress transport

By decomposing the N-S equation for momentum and subtracting the
RANS equation from it, a transport equation for the momentum of the
fluctuations is obtained

i L 9 (Tous)| = oU; _ Op 2, 0 _ TR
[ ot " By (t kui)} = PG, T 8m THY M T By (puiug — puitiy)

Multiply the transport equation for the fluctuating momentum, term by term, by
The fluctuating velocity components, u;

3“,‘, d . _ ﬂf; B aj:}
pU {ﬁt + 9z, (ka)] = TPUUkS k U; o,
0

Exchange the subscripts, i and j 'k

_ ﬂuj d = _ rﬁi B ap
P [ o 8:1:;3 (U ;l._uj)] = —puitn 5 . utrﬁ,rj
d

+pu; V3 — Uig— (pujur — pu;uy)
Lk



Add these last two equations together, average the result and simplify using
Reynolds rules to obtain the transport equation for the Reynolds stress tensor.

g(u-u-}ﬁ—i(ﬁ U5 ) = uuaL + uuav
ot Pt hﬁ:l:;.; kP f..;rJ_ P kaL P Laik
Ad\r;:tinn F‘mdwu;tiﬂn
U U ;U
a Tk {;} J ;‘:)—'
Turbule-?diffusinn
g . . —
zrar/2— (PUidjk + Pujoix) +  2Psi;
ok | S
h Pressure—strain

Pressure diffusion

+ p(wiV2u; 4+ u;VZ3ug) .
T -~ -
Viscous diffusion & Dissipation

Turbulent kinetic energy conservation

Leti=jin the turbulent transport equation and divide each term by 2 p to
obtain the transport equation for turbulent kinetic energy (per unit mass).

Here K is uui/2.
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does it represent the full dissipation rate.
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Fig. 4.11 Comparison of turbulent boundary laver and channel flow production and dissipation rates
scaled with v and uy. 0, boundary laver measurements at Ry = 1050 [33]; — DNS boundary laver ai
Ry = 650 [60]; — —, DNS channel flow Ry = 590 [49].
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Fig. 4.10  Turbulent kinetic energy budget in channel flow R, = 390 scaled with v and u;. — - —,
production; — 4+ —, dissipation: — —, pressure work, — — , viscous diffusion; —, turbulent transport.
i From [49].)
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Fig. 5.23  Turbulent kinetic energy balance in two-siream mixing laver for Rg = 1500 — 2000, —,
production (positive curve) and dissipation rate (negaiive curve ), — —, time derivative; ---, turbulent
diffusion — - —, pressure diffusion. Terms made nondimensional by AU 3 and 8. (From [32].)



Vorticity and enstrophy transport
vorticity (1; is defined as the curl of the velocity:

oUy,
Az

; = €ijk o
by taking the curl of the Navier-Stokes equations (3.6) in vorticity form:

+ U?EU;'

O[OV 8 (U _ o], @ [ 18P
Ewﬂmq ot +ﬂ:r;- 2 CijkT sk _Epwﬂmq p Oz;

The Instantaneous Vorticity Transport Equation is obtained

o0, 8 v,
* ) =0,
gt * o, Uit =g

Averaged Vorticity Transport Equation




Multiply the instantaneous vorticity transport equation term by term
with Q /2, average and separate the last term into its diffusive and
dissipative parts to obtain an averaged transport equation for

enstrophy, £2;€2;/2

Ei Ha,.ﬂ.!_ 5‘ " “'rﬂ-!. aU‘f
U, = (2,00, —
ot 2 +@3:_,— 72 T Oz
. y ’ e —
Advection Rotation and stretching
5 $2:81; a0 99,
Ly ekl el I [l d
oV “(am:, 9z, )’

l"'_ﬁi_ﬂl.‘_..l_'l

Viscous diffusion  yieequs dissipation

This is different from and simpler than the transport equation for mean enstrophy
Q2
2
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Transport equation of mean enstrophy

g 0.0, § (— T, d AT,
— ] — - — (T, g
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Transport equation of fluctuating enstrophy

dww; 9 —T_Wa)Jri u.miwi)_{_u aQ;
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SCALAR TRANSPORT

adC
Diffusion rate in units of scalar/area/sec, — ii)a—
VX

where 1) s the diffusivity coefficient

Transport equation for a passive scalar

IC  aC ,,
L LU —pvice
3t i ox; T4

Applying Reynolds decomposition and averaging

5C —oC o [ _aC
- —I—E-—:_— D— —u;c) +gq
dt il 0. dx; pa

scalar flux



CORRELATION

Two-point correlation Rij(x, ¥, 1) = ui(X, Duj(y, 1)

dividing this by the variances of u;and u; gives the correlation coefficient,
R; which has a limiting maximum value of +1 when | = jand x and y are
coincident. It can also take on negative values with a limiting value of -1
when u;and u;are the same signals but are 180° out of phase.

Space-time correlations are formed when we let x and y be at different
locations and let the time be different for the two variables being

correlated.



dw
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Fioure 3. Simultanecus records of the fluctusting wall gradients with Az* = 36, Az* = 0,
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Firoure 4. Bimultaneous resords of the flustuating wall gradients with Azt = 252, Az+ = 0.
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Fieure 5. Streamwise space—time correlations of (éu/8y)| 5 and (fw/8y)| 5 as & function of Ax*,
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SPECTRA

Energy Spectrum Tensor

Define the separation distance between locations as r and take the
Fourier transform of the two-point correlation tensor R;;(x,x+r,7)
For a fixed location x

E,‘j(k, 1) = (23‘1’)_3] ,;;*”"k’R_”(r, t)dr.
i |

Here k is the wavenumber vector. Of course, the inverse Fourier transform
IS the two-boint correlation tensor.

’R.;j(l', ) = / f:f"_”"kE;J; (k, 1) dk
9N '

where dk = dk,dk,dk;is the differential volume in wavenumber space.
Letting i =j, r =0 and dividing by 2, yields the spectrum of TKE

|
K(t) = ;/ E;;(k, 1) dk
)

13
- _1_



In spherical coordinates this can be written as

o ]
K(1) :f dk [—f dQ E;;{k.r}].
0 2 Jikj=k

where d€2 1s an element of solid angle 1n k space and dk = d€2 dk.

The term in brackets is defined as the energy density function or, in short,
the energy spectrum.

1
E(k,t) —f E:;(k, t)dS2.
2 |k|=k

so that

&
K(t) = f Ek, t)ydk.
[}

E(k,t) represents all the energy in a spherical shell in k-space located at
k= k| -



Time Auto-correlation Function (of a single signal at one location in
space correlated with itself as a function of time delay)

- Uy + 1)
Rp(t) = —

u(t)

Integral time scale
T]ff Rp(t)dr

The Fourier transform of Rg () is

i I:::I [
Re(w') = ] e " Rp(t)ydr

20

where w’ = 21 w is the angular frequency (radians) and w is the
frequency (rev/s).



The inverse transform is, of course, the time auto-correlation function itself

2

Re(t) = r— f?mﬁfﬁg{mi} de'
21 J_ o

Evaluating Rg (1) at T = 0 and defining

Ei(w) = 2u?Rp(2mw)

after a change of variable we have

- ] o
e = 3 [ E(a) da.

S W —0o
(i

f Rp(r) issymmetric 12 = Ej(w) dw.
(]

E,, is called the frequency spectrum. It can easily be determined
From time series of experimental data.

For isotropic turbulence Ry, (r,t) can be related t R (t) by means of
“Taylor’s Hypothesis, and E(k,t) can be calculated from E;; (w).



Taylor’s Frozen Turbulence Hypothesis
to determine streamwise gradients

dU; | dU;

dx _E dt

Alternatively, setting the acceleration equal to zero in the N-S equations

al, al; al/; al;
U—+ U, Uy,— = 0.
ar + U o + 5y + Us 37

Rearranging (3.31) yields

— U
dx U, \ at + Ty Jz

Streamwise wavenumber approximated from frequency

2mf
T,

adl; | ({-iUr- al; U ::'}E,r)

k, =
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Fig. 3.5 Comparison of time-series signals determined from Tavlor's hvpothesis [Egs. (3.30) — and

(3.32) +++ ] and from the continuity equation (- - - ) using mixing-laver data from a 12-sensor probe. { From

[31].)
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Figure 5.1: Freguency spectra. (a) Development of a frequency spectrum from narrow-band elements:
------- - contribution of a flter with nominal limits oy and we; complete power spectrum. (b)) Sketch

of the weighted (by <) frequency spectra for: Reynolds shear stress uo, - streamwise velocity
Auctuations w, -—— pressure fluctuations p' and —-— approximation of dissipation rate (Hu/d8)? (from AJR
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k, =2nm/U,

o = k,U-/2n

Figure 5.2: One-dimensional and
three-dimensional spectra (from Brad-
shaw [7]).



i Direction of ‘. Direction of

measurement measurement
Wave—number
vector
Wiave—number
vector
i \
2k
/ 3%
(a) (2]

Figure 5.3: Aliasing in a one-dimensional spectrum: (a) a wave of true wave-number k, aligned with the
line of measurement, (b) a wave of wave-number k' > k, with wave-number vector oblique to the line of
measurement (from TL [7]).



TURBULENCE SCALES

Smallest scales of turbulence are in a state of universal equilibrium,
according to Kolmogorov, that should depend only on the rate of
dissipation, g, and the viscosity, i

P 4

Kolomogorov length scale 11 = —7;
E i
N 1/2
Kolmogorov time scale ; = (_)
€

Kolmogorov velocity scale vy = (ve)!/?



]
Isotropic dissipation rate, e(f) = uf sz[k, tydk
0

E(k1)

ke ki

Fig. 2.2 Spectral ranges of E(k, 1) and K2 E(k, t).



Eulerian integral time scale

From the auto-correlation cocfficient

R(ry = TOET)
&

we can define the Fulerian integral time scale as
e
TE:/- R{T)dr.
i)

Eulerian temporal micro-scale

1

) ’ 257 r
TR = -
(s} E)°

Eulerian integral length- and micro-length scales

R(r) = 2X)sx+T) L, :L R(r)dr
*

e

}I_|:_ 2 j|'-§'_l 257 } ) A E :
aR(0) 01 (s ]0r)° V2 (wfon)

Taylor micro-scale (named after G. 1. Tavlor)



Two spatial correlations that play a special role in isotropic turbulence
theory and are found from R; (r, t) are longitudinal and transverse
correlation functions

— , ) ,
uy f(ry=Ryj(re, 1) usg(r) = Ryp(re, 1)
where g; Is the unit vector in the coordinate direction.

(1)

Fig. 1.4 (a) Longitudinal and (b) transverse velocity correlations used in definitions of f(r) and g(r),
respectively.



Micro length-scale

Defined from Taylor series of £f(r) near r = 0. It is a measure of the scales
at which turbulent dissipation occurs.

df red*f
flryi=14r dr{[]} + — 512 (0 + -
Soforf=0,r=A
~0
*2 ;,rE
0=1+ Xﬁ/mw : f{ﬂ}
dr 2V dr-

The microscale, A, is the intercept of this parabola with the r-axis.
It is obviously related to the curvature of f at r = 0.



Fig. 1.5 Microscale definition.



Ratios of Scales

For isotropic turbulence
L

=

Ao

e

~ R, where R, = tps2 /v is a turbulence Reynolds number.

Choosing a different Reynolds number, R, = Hrmsfff“
based on the physical size of the flow domain and from the definition of 1]

1 I |

o VRORM™

showing that 7 1s generally smaller than A but not so much so. In fact 1t can be seen
that 4 1s a reasonable measure of the scales where most of the dissipation takes place.
L
e
— ~ R
n
which 1s the ratio of the largest to smallest scales in the flow.

(2.101)

2RI, (2.102)

2

. . 1 - . . - .
A three-dimensional mesh would then have tobe ~ (I, /)" in size. In view of (2.102)
it follows that the number of mesh points in a tully resolved turbulent How simulation
9/4
has a R, dependence on Reynolds number.



Inertial Subrange

Range of scales over which there is no significant kinetic energy production or
dissipation and where the energy spectrum depends only on the dissipation
rate, €, and not on the viscosity. This is the idea of the “energy cascade.”
Dimensionally this requires that the spectrum have the form

—5/3 _2/3
E(k, ty ~k™/""e~",
or with a Kolmogorov constant Cg.

E(k,t) = Cxk™ e,

The one-dimensional spectrum also has a k—/tdependency.
assuming isotropy, the one-dimensional longitudinal and transverse spectra

E, (k) = C, ek} C=55/18C, ~ 3
bt C,=0.49 C',=0.65
Eyy(k,) = Egy(k,) = C; élk;

sctively. The Kolmogorov constant C is equal to 33C, (Monin & Yaglom 19
(4) evaluated in the inertial subrange gives C./C. = 4/3. and

E, (k) = Ey(k,) = %(1 —K, %) E,\(k,)
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FiGure 9. Kolmogorov's universal scaling for one-dimensional longitudinal power spectra. The
present mid-layer spectra for both free-stream wvelocities are compared with data from other
experiments. This compilation is from Chapman (1979), with later additions. The solid line is from
Pao (1965). R,: O, 23 boundary layer (Tielman 1967); ©, 23 wake behind cylinder (Uberoi &
Freymuth 1969); V7, 37 grid turbulence (Comte-Bellot & Corrsin 1971); 7, 53 channel centreline
(Kim & Antonia (DNS) 1991); [, 72 grid turbulence (Comte-Bellot & Corrsin 1971); O, 130
homogeneous shear flow (Champagne er al. 1970); &, 170 pipe flow (Laufer 1954); 4, 282 boundary
layer (Tielman 1967); ©, 308 wake behind cylinder (Uberoi & Freymuth 1969); A, 401 boundary
layer (Sanborn & Marshall 1965); A, 540 grid turbulence (Kistler & Vrebalovich 1966); x, 780
round jet (Gibson 1963); -, 850 boundary layer (Coantic & Favre 1974); +, ~ 2000 tidal channel
(Grant er al. 1962); ©, 3180 return channel (CAHI Moscow 1991); @, 1500 boundary layer (present
data, mid-layer: U, = 50 m s™'); M, 600 boundary layer (present data, mid-layer: U, = 10 ms™).
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FiGure 13. Compensated longitudinal and transverse spectra measured at mid-layer for the high-
speed case (y = 400 mm, y* = 62000, R, = 1450). Only the data for wavenumber range k, y < 0.25
can be accepted. Solid lines are the ninth-order, least-square, log-log polynomial fits to the spectral
data. (a) w,-spectrum; (b) u,-spectrum; (c) u,-spectrum.
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FIGURE 22. Ratios of the calculated to measured transverse spectra at different locations in the
pec
boundary layer for two different free-stream velocities. ———-, a =2; — . —, a = 3. For key to

captions for (@){d) see figure 20.



Local isotropy in turbulent boundary layers
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FiGURE 21. Ratios of the measured u,-spectra to u,-spectra at different locations in the bound
layer for two different free-stream velocities. For key to captions for (a)~d) see figure 20.



PROBABILITY DENSITY FUNCTIONS & CENTRAL MOMENTS
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Figure 4.1: Skeich of how the probability density function (PDF) is determined from a time series of a
signal S(t) (from TL [113]).
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Mean value of S S(t) lim — S(t)dt = f SP(S)dS.
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nth moment of S Sn = / S"P(S)dS.
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Figure 4.3: Examples of the PDFs of two time series S(¢) that have small and large flatness factors (from
TL [113]).



Joint Probability Densities and statistical independence

S At
JPDF P(51,5;) = lim  lim TAS,AS,

ASg—0

P{S]_?S‘:g} > and / / f.ﬁ]_,f}g dS] dég =1
Joint Moment 518, = / / 5189 P(S1, S2) dS1dS,

Statistical independence when P(S5:,8:) = Ps,(51)Ps,(S5)
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Figure 4.4: Sketch of how the joint probability density function (JPDF) is determined from two time series
S1(t) and Sa(t) (from TL [113]).
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(a)

0.5 0 0.5

FiGURE 11. (@) JPDFs and () covariance integrands of @, and 2,, non-dimensionalized by v/u;. All
vorticity and velocity gradients are normalized by this time scale here and in the following figures.
Contour increments (for y* = 20, 35 and 89, respectively) are (a) 3.3, 4.5, 9.0 and (b) 3.4 x 10 °,
29 % 107% 1.4 % 10°% The outer contours are one increment above zero.
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FIGURE 15. Projections of vorticity filament segments making the largest contributions to 2.0,.
2,02, and 2,0Q. at y* = 20, 35 and 89. (a) Projection on (x, y)-planc where 6 = tan'(Q,/02,):
By = 58%(or — 118%) at y' = 20, f3s = 48" (or — 136”) at y* = 35 and By = 48° (or — 137°)
at y* = 89. (b) Projection on (x,z)-plane where v = tan~ Y2, /2.): 70 = +16°, v3s = +27° and
ve = +42°. (c) Projection on (y,z)-planc where ¢ = tan™'(2,/02.): ¢ = £27°, ¢35 = +35° and
by = +37°,



Detection Method for Phase Averaging
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Phase averaged velocCity vectors
in a moving frame of reference
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Phase Averaged Dissipation Rate & Vorticity Covariance
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