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Describe how properties of a fluid element change, as given by the 

substantial derivative, D( )/Dt, as the element is transported through 

the flow field.

mean and fluctuating velocity 

components are divergence free



Decomposing into mean and fluctuating parts, invoking continuity  

and averaging using Reynolds rules yields

Reynolds stress tensor

This equation and together are called the Reynolds Averaged  

Navier-Stokes Equations (RANS). This equation describes the transport of the 

Mean momentum in the xi direction

There are more unknowns than the four available equations.  To “close” the 

set of equations the Reynolds stress term must be related to the 

velocity gradient in some way through a model equation.

(N-S)



Reynolds Shear stress or velocity fluctuation covariance

For i = j, and summing over i, half this covariance becomes the turbulent kinetic 

energy (TKE) when multiplied by the density

The square roots of these variance are the root-mean-square values of the 

velocity fluctuation components.  They are a measure of the amplitudes of 

the fluctuations. 

T

The components of the TKE are related to the variances of the velocity fluctuations

K



By decomposing the N-S equation for momentum and subtracting the 

RANS equation from it, a transport equation for the momentum of the 

fluctuations is obtained 

Multiply the transport equation for the fluctuating momentum, term by term, by 

The fluctuating velocity components, uj.

Exchange the subscripts, i and j



Add these last two equations together, average the result and simplify using 

Reynolds rules to obtain the transport equation for the Reynolds stress tensor.

Let i = j in the turbulent transport equation and divide each term by 2 ρ to 

obtain the transport equation for turbulent kinetic energy (per unit mass).  

Here K is uiui/2.



(turbulent transport)











Averaged Vorticity Transport Equation

The Instantaneous Vorticity Transport Equation is obtained



Multiply the instantaneous vorticity transport equation term by term 

with Ω /2, average and separate the last term into its diffusive and 

dissipative parts to obtain an averaged transport equation for  

enstrophy,  

This is different from and simpler than the transport equation for mean enstrophy 







Transport equation of mean enstrophy

Transport equation of fluctuating enstrophy





Diffusion rate in units of scalar/area/sec,

Transport equation for a passive scalar

where is the diffusivity coefficient

Applying Reynolds decomposition and averaging

scalar flux



CORRELATION

Two-point correlation

dividing this by the variances of ui and uj gives the correlation coefficient, 

Rij, which has a limiting maximum value of +1 when I =  j and x and y are 

coincident.  It can also take on negative values with a limiting value of -1 

when ui and uj are the same signals but are 180o out of phase.

Space-time correlations are formed when we let x and y be at different 

locations and let the time be different for the two variables being 

correlated.







Energy Spectrum Tensor

Define the separation distance between locations as r and take the 

Fourier transform of the two-point correlation tensor

For a fixed location x

Here k is the wavenumber vector.  Of course, the inverse Fourier transform 

is the two-point correlation tensor.

where dk = dk1dk2dk3.is the differential volume in wavenumber space. 

Letting i = j, r = 0 and dividing by 2, yields the spectrum of TKE

SPECTRA



In spherical coordinates this can be written as

The term in brackets is defined as the energy density function or, in short, 

the energy spectrum.

so that

E(k,t) represents all the energy in a spherical shell in k-space located at 

k = │k│ .



Time Auto-correlation Function (of a single signal at one location in 

space correlated with itself as a function of time delay)

Integral time scale

TE =

The Fourier transform of is 

where ω’ = 2π ω is the angular frequency (radians) and ω is the 

frequency (rev/s).



The inverse transform is, of course, the time auto-correlation function itself

Evaluating at τ = 0 and defining

after a change of variable we have

If is symmetric

E11 is called the frequency spectrum.  It can easily be determined 

From time series of experimental data.

For isotropic turbulence R11(r,t) can be related to by means of

“Taylor’s Hypothesis, and E(k,t) can be calculated from E11 (ω).



to determine streamwise gradients

Streamwise wavenumber approximated from frequency

Alternatively, setting the acceleration equal to zero in the N-S equations







k1 = 2πω/UC

ω = k1UC/2π





Smallest scales of turbulence are in a state of universal equilibrium, 

according to Kolmogorov, that should depend only on the rate of 

dissipation, ε, and the viscosity, 

Kolomogorov length scale

Kolmogorov time scale

Kolmogorov velocity scale



Isotropic dissipation rate,



Le



Two spatial correlations that play a special role in isotropic turbulence 

theory and are found from Rij (r, t) are longitudinal and transverse 

correlation functions

where ei is the unit vector in the coordinate direction.



Micro length-scale

Defined from Taylor series of f(r) near r = 0.  It is a measure of the scales 

at which turbulent dissipation occurs.

So for f = 0, r = λ

~0

The microscale, λ, is the intercept of this parabola with the r-axis. 
It is obviously related to the curvature of f at r = 0.





Ratios of Scales

Choosing a different Reynolds number,

based on the physical size of the flow domain and from the definition of 

For isotropic turbulence

Le

Le



Range of scales over which there is no significant kinetic energy production or 

dissipation and where the energy spectrum depends only on the dissipation 

rate, ε, and not on the viscosity.  This is the idea of the “energy cascade.”  

Dimensionally this requires that the spectrum have the form

The one-dimensional spectrum also has a  dependency.

and

C = 55/18 C1 ~ 3

C1 ≈ 0.49     C'1 ≈ 0.65







Local isotropy







PROBABILITY DENSITY FUNCTIONS & CENTRAL MOMENTS



Mean value of S

nth moment of S

nth moment of 

Fluctuation s

Skewness factor

with σ the standard deviation (rms) of s

Flatness factor 

(Kurtosis)





JPDF

Joint Moment

Statistical independence when 













Detection Method for Phase Averaging

Spectral bump in v 

spectrum at upper edge of 

mixing layer



Phase averaged velocity vectors 

in a moving frame of reference



Phase Averaged Dissipation Rate & Vorticity Covariance


